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FDTD Analysis of Magnetized Ferrites:
An Approach Based on the Rotated
Richtmyer Difference Scheme

José A. Pereda, Luis A. Vielva, Angel Vegas, and Andrés Prieto, Member, IEEE

Abstract— Electromagnetic wave propagation in magnetized
ferrites is modelled by solving Maxwell’s time-dependent curl
equations coupled with the equation of motion of the magnetiza-
tion vector. A discretization approach based on the rotated Richt-
myer finite-difference scheme is proposed. The new approach
has been used to calculate the phase constants of transversally
magnetized ferrite-loaded waveguides. The numerical disper-
sion equation for TE..; modes is derived. The results obtained
with this approach for a ferrite-filled and a ferrite-slab loaded
waveguide are compared with those obtained with Yee’s scheme
extended for the treatment of ferrites and with the exact results.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method, as for-

mulated by Yee [1], is now a well-established numerical
technique for the analysis of a great variety of electromagnetic
problems. It is based on the direct discretization of Maxwell’s
time-dependent curl equations by using central differences.
In order to approximate the spatial derivatives by central
differences, a single field component is assigned to each node
of the unit cell.

Very recently, Yee’s formulation of the FDTD method
has been extended to include magnetized ferrites [2]. In
this extension, the treatment of ferrite material is based on
discretizing not only Maxwell’s equations but also the equation
of motion of the magnetization vector. Since Yee’s formulation
involves the assignment of a single field component to each
mesh node, the equation of motion, which only involves time
derivatives, requires spatial interpolation to be evaluated.

This letter presents an alternative approach for handling fer-
rite material. This approach is also based on the discretization
of Maxwell’s equations coupled with the equation of motion of
the magnetization vector but instead of using an extended Yee
scheme, it makes use of the rotated Richtmyer finite-difference
scheme. From the point of view of the ferrite treatment, this
latter scheme, which has recently been proposed as a way of
solving Maxwell’s equations for the isotropic case [3], has the
important advantage that the discretization mesh has only two
different kinds of nodes, electric nodes and magnetic nodes.
As a consequence, the equation of motion can be evaluated
without any type of spatial interpolation.
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II. APPROACH

It is assumed that the ferrite is magnetized to saturation by
a dc magnetic field applied in the z-direction, I_L' = H;d,.
Under this condition, the ferrite is described by the linearized
equation of motion expressed in terms of the magnetic flux
density B and the magnetic field strength H (for the sake of
brevity no magnetic losses are included) [4]
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where « is the gyromagnetic ratio, M, the saturation magne-
tization and po the permeability of the vacuum.

These equations coupled with Maxwell’s equations must
be solved. As has recently been proposed for isotropic media
[3], Maxwell’s equations are discretized by using the rotated
Richtmyer scheme. The isotropic formulation uses a mesh
with electric nodes (where E,, E,, and E, are defined) and
magnetic nodes (where H., H,, and H, are defined). To
extend this mesh to the ferrite case, B, and B, are added at the
magnetic nodes. The discretization in time of (1)—(2) follows
the same scheme as in [2]. This mesh arrangement allows
the time-difference version of these equations to be evaluated
without spatial interpolation. Note that, as in the isotropic
case, spatial interpolation is used to evaluate Maxwell’s curl
equation.

ITI. TEST OF ACCURACY: COMPARISON WITH YEE’'S SCHEME

In order to show the validity of the above scheme and
compare its accuracy with the Yee scheme, the new approach
for treating ferrite materials has been applied to the analy-
sis of transversally magnetized ferrite-loaded waveguides. In
general, this is a 3-D problem that can be reduced to an
equivalent 2-D problem by assuming that the fields have the
form F(x,y,z,t) = f(z,z,t) exp(—jBy) [5], where y is
the direction of propagation and S the phase constant of the
mode being considered. To obtain the dispersion characteristics
B(f), B is fixed as an input parameter, and the time-domain
response is obtained by applying the reduced 2-D FDTD
formulation in the guide’s cross-section, which has previously
been discretized using a 2-D mesh (see Fig. 1). The frequency-
domain response is obtained from the spectral analysis of the
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Fig. 1. 2-D mesh for the analysis of ferrite-loaded waveguides. (a) Yee mesh
extended to ferrite treatment. (b) Rotated Richtmyer mesh extended to ferrite
treatment.

time-domain response. Each peak of the spectrum corresponds
to one excited mode that has the previously mentioned value
of 3 at the frequency of the peak. By changing 5 and repeating
this process, the whole dispersion diagram is obtained.

To illustrate the accuracy of the method, we have derived the
dispersion equation for TE,g modes (I,, H,, H,, B,, and
B, components only) of a transversally magnetized lossless
ferrite-filled waveguide. As was done in the isotropic case [6],
we substitute general plane wave solutions into the difference
equations to obtain the numerical dispersion relation
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for Yee’s scheme, where p is the numerical effective

permeability given by
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Az is the space increment in the z-direction, At the time
step, w the numerical angular frequency and &, the numerical
wavenumber in the z-direction. The dispersion equation for
the Richtmyer scheme is obtained by the same procedure. It
has the same form as (3) but the term (32/4) is replaced by
(B cos(kyAz/2)/2)3.

Consider the TEjo mode of a rectangular ferrite-filled
waveguide of width a. Assuming a wavenumber k, = 7/a
and selecting a value of (3, we can obtain the corresponding
numerical value f¥PTP by solving the numerical dispersion
equation analytically. The dispersion error is then obtained by
comparing fFPTP with the exact value f. The accuracy of
both formulations, depends on Az and At, which are related
by the stability condition. For 1-D problems, like the problem
under consideration, the stability condition for the Yee scheme
can be expressed as [6]

s =
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while for the Richtmyer scheme, it becomes [7]
cAt
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Fig. 2. Relative error in the determination of frequencies of the TE;o mode
of a ferrite-filled rectangular waveguide magnetized in the z-direction as a
function of frequency for various values of the stability factor s. a = 22.86
mm, e =9, 47 M, = 2000 G, H, = 200 Oe, and Az = a/10. Solid line:
Yee scheme extended to ferrite treatment. Dashed line: Rotated Richtmyer
scheme extended to ferrite treatment.

whete s is the stability factor, whose value must not exceed
unity to guarantee the numerical stability of the algorithms.

The relative dispersion error ((f¥PTP — f)/f2100) in the
determination of the frequencies (corresponding to values of 3
in the band 6.5-13.0 GHz) of the mode TE1¢ of a rectangular
ferrite-filled waveguide is shown in Fig. 2. In this example,
k. Az is constant, hence, the spatial dispersion error does not
depend on the frequency. At frequencies near the cutoff, most
of the error is incurred in the evaluation of PP, This error
becomes smaller as At decreases, i.e., as s decreases. At high
frequencies, the error becomes larger because wA¢t increases;
this time dispersion error also becomes smaller as s decreases.

Fig. 3 shows the phase constant for the TE;y mode of
a ferrite-slab loaded waveguide. The results depicted in the
figure have been obtained numerically with both schemes and
are compared with the exact ones, which have been obtained
by solving the corresponding characteristic equation [4]. In
this case, €, = 1, hence, the error in pFPTP is maintained
very low. At high frequencies, the Richtmyer scheme exhibits
a greater spatial dispersion error than Yee’s scheme. Near the
cutoff, similar accuracy is obtained with both schemes, but the
Richtmyer scheme is more efficient (larger values of At less
CPU time and memory requirements).

IV. CONCLUSION

An alternative discretization scheme, based on the rotated
Richtmyer finite- difference scheme, is proposed for the FDTD
treatment of magnetized ferrites. The main advantage of this
approach over the extended Yee scheme for ferrite treatment
is that all the field components involved in the equation of
motion are located at the same node of the cell, thus avoiding
the use of spatial interpolations to evaluate this equation.
However, as in the isotropic case, spatial interpolation is
necessary to evaluate Maxwell’s equations. Then, the rotated
Richtmyer scheme presents greater accuracy in the treatment
of the constitutive characteristics of the ferrite, but also higher
numerical dispersion error than Yee’s scheme. To compare
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Fig. 3. Phase constant of the TE}o mode of a rectangular waveguide loaded

with a ferrite slab. a = 22.86 mm, ajw = 3,’¢; = 9, 47 M = 2000 G,

H; = 200 O¢, Az = /12 and 5 = 1/2.-Solid line: exact. Triangles: Yee

scheme extended to ferrite: treatment. Squares Rotated Rlchtmyer scheme

extended to ferrlte treatment - .

these two schemes, they have been.applied to the analysis
of ferrite-loaded wavegu1des From the results obtained, it
seems that the . Rlchtmyer scheme would be better under
hlgh amsotroplc condmons and the Yee scheme advantageous

at high frequencies. Further discussion on the relationship
between these two difference schemes can be found'in [8].
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