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Abstract— Electromagnetic wave propagation in magnetized

ferrites is modelled by solving Maxwell’s time-dependent curl

equations coupled with the equation of motion of the magnetiza-
tion vector. A discretization approach based on the rotated Richt-
myer finite-difference scheme is proposed. The new approach

has been used to calculate the phase constants of transversally

magnetized ferrite-loaded waveguides. The numerical disper-

sion equation for TE.O modes is derived. The results obtained

with this approach for a ferrite-filled and a ferrite-slab loaded
waveguide are compared with those obtained with Yee’s scheme
extended for the treatment of ferrites and with the exact results.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method, as for-

mulated by Yee [1], is now a well-established numerical

technique for the analysis of a great variety of electromagnetic

problems. It is based on the direct discretization of Maxwell’s

time-dependent curl equations by using central differences.

In order to approximate the spatial derivatives by central

differences, a single field component is assigned to each node

of the unit cell.

Very recently, Yee’s formulation of the FDTD method

has been extended to include magnetized ferrites [2]. In

this extension, the treatment of ferrite material is based on

discretizing not only Maxwell’s equations but also the equation

of motion of the magnetization vector. Since Yee’s formulation

involves the assignment of a single field component to each

mesh node, the equation of motion, which only involves time

derivatives, requires spatial interpolation to be evaluated.

This letter presents an alternative approach for handling fer-

rite material. This approach is also based on the discretization

of Maxwell’s equations coupled with the equation of motion of

the magnetization vector but instead of using an extended Yee

scheme, it makes use of the rotated Richtmyer finite-difference

scheme. From the point of view of the ferrite treatment, this

latter scheme, which has recently been proposed as a way of

solving Maxwell’s equations for the isotropic case [3], has the

important advantage that the discretization mesh has only two

different kinds of nodes, electric nodes and magnetic nodes.

As a consequence, the equation of motion can be evaluated

without any type of spatial interpolation.
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II. APPROACH

It is assumed that the ferrite is magnetized to s~turation by

a dc magnetic field applied in the z-direction, Hi = Hid’..

Under this condition, the ferrite is described by the linearized

equation of motion expressed in terms of the magnetic flux

density 1? and the magnetic field strength II (for the sake of

brevity no magnetic losses are included) [4]

t3Bz dHz
—–PO at

at
— = –vPo(HzBy – (JL + Hi) PoHy) (1)

8BY 8HV
—–PO at

at
— = JYLLO((M. + Hi)/JoH. – HiB.), (2)

where ~ is the gyromagnetic ratio, Ms the saturation magne-

tization and No the permeability of the vacuum.

These equations coupled with Maxwell’s equations must

be solved. As has recently been proposed for isotropic media

[3], Maxwell’s equations are discretized by using the rotated

Richtmyer scheme. The isotropic formulation uses a mesh

with electric nodes (where E., Ev, and Ez are defined) and
magnetic nodes (where Hz, Hv, and Hz are defined). To

extend this mesh to the ferrite case, B. and By are added at the

magnetic nodes. The discretization in time of ( l)–(2) follows

the same scheme as in [2]. This mesh arrangement allows

the time-difference version of these equations to be evaluated

without spatial interpolation. Note that, as in the isotropic

case, spatial interpolation is used to evaluate Maxwell’s curl

equation.

III. TEST OF ACCURACY: COMPARISON WITH YEE’S SCHEME

In order to show the validity of the above scheme and

compare its accuracy with the Yee scheme, the new approach

for treating ferrite materials has been applied to the analy-

sis of transversally magnetized ferrite-loaded waveguides. In

general, this is a 3-D problem that can be reduced to an

equivalent 2-D problem by assuming that the fields have the

form F(z, y, z, t) = ~(z, Z, t) exp(–j,lly) [5], where y is

the direction of propagation and ,8 the phase constant of the
mode being considered. To obtain the dispersion characteristics

~(~), @ is fixed as an input pm~eter, and the time-domain
response is obtained by applying the reduced 2-D FDTD

formulation in the guide’s cross-section, which has previously

been discretized using a 2-D mesh (see Fig. 1). The frequency-

domain response is obtained from the spectral analysis of the
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Fig. 1. 2-D mesh for the analysis of ferrite-loaded waveguides. (a) Yee mesh

extended to ferrite treatment. (b) Rotated Richtmyer mesh extended to ferrite

treatment. ,

time-domain response. Each peak of the spectrum corresponds

to one excited mode that has the previously mentioned value

of@ at the frequency of the peak. By changing /3 and repeating

this process, the whole dispersion diagram is obtained.

To illustrate the accuracy of the method, we have derived the

dispersion equation for TEnO modes (Ez, Hz, Hu, Bz, and

By components only) of a transversally magnetized lossless

ferrite-filled waveguide. As was done in the isotropic case [6],

we substitute general plane wave solutions into the difference

equations to obtain the numerical dispersion relation

FDTD
~Peff

sinz (wAt/2) =
sinz (lczAx/2) + &

(At)2 (Ax)2 4 ‘
(3)

for Yee’s scheme, where ,u~#TD is the numerical effective

permeability given by

4tan2 (wAt/2) – (YLLO(H8 + M.)At)2
P’eff‘DTD = Po

4tan2 (wAt/2) – (TpoAt)2Hi(M. + Hi)”
(4)

Ax is the space increment in the x-direction, At the time

step, w the numerical angular frequency and kZ the numerical

wavenumber in the x-direction. The dispersion equation for

the Richtmyer scheme is obtained by the same procedure. It

has the same form as (3) but the term (@2/4) is replaced by

(@cos(kaAx/2)/2)2.

Consider the TEIO mode of a rectangular ferrite-filled

waveguide of width a. Assuming a wavenumber k. = fi/a

and selecting a value of ~, we can obtain the corresponding

numerical value j ‘DTD by solving the numericti dispersion

equation analytically. The dispersion error is then obtained by

comparing fFDTD with the exact value f. The accuracy of

both formulations, depends on Ax and At, which are related

by the stability condition. For 1-D problems, like the problem

under consideration, the stability condition for the Yee scheme

can be expressed as [6]

‘At(ti+v “)“v=
while for the Richtmyer scheme, it becomes [7]

cAt
‘=

SAX ‘
(6)
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Fig. 2. Relative error in the determination of frequencies of the TEIO mode

of a ferrite-filled rectangular wavegnide magnetized in the z-direction as a
function of frequency for various vatues of the stability factor s. a = 22.86

mm, e, = 9, 47rM, = 2000 G, H, = 200 Oe, and Az = a/10. Solid line:
Yee scheme extended to ferrite treatment. Dashed line: Rotated Richtmyer
scheme extended to ferrite treatment.

where s is the stability factor, whose vahte must not exceed

unity to guarantee the numerical stability of the algorithms.

The relative dispersion error ((~FDTD – ~)/fx100) in the

determination of the frequencies (corresponding to values of ,6’

in the band 6.5–1 3.0 GHz) of the mode TEIO of a rectangular

ferrite-filled waveguide is shown in Fig. 2. In this example,

lczAx is constant, hence, the spatial dispersion error does not

depend on the frequency. At frequencies near the cutoff, most

of the error is incurred in the evaluation of @TD. This error

becomes smaller as At decreases, i.e., as s decreases. At high

frequencies, the error becomes larger because wAt increases;

this time dispersion error also becomes smaller as s decreases.

Fig. 3 shows the phase constant for the TEIO mode of

a ferrite-slab loaded waveguide. The results depicted in the

figure have been obtained numerically with both schemes and

are compared with the exact ones, which have been obtained

by solving the corresponding characteristic equation [4]. In

this case, Crm,n = 1, hence, the error in P~~TD is maintained

very low. At high frequencies, the Richtmyer scheme exhibits

a greater spatial dispersion error than Yee’s scheme. Near the

cutoff, similar accuracy is obtained with both schemes, but the

Richtmyer scheme is more efficient (larger values of At, less

CPU time and memory requirements).

IV. CONCLUSION

An alternative discretization scheme, based on the rotated

Richtmyer finite- difference scheme, is proposed for the FDTD

treatment of magnetized ferrites. The main advantage of this

approach over the extended Yee scheme for ferrite treatment

is that all the field components involved in the equation of
motion are located at the same node of the cell, thus avoiding

the use of spatial interpolations to evaluate this equation.

However, as in the isotropic case, spatial interpolation is

necessary to evaluate Maxwell’s equations. Then, the rotated

Richtmyer scheme presents greater accuracy in the treatment

of the constitutive characteristics of the ferrite, but also higher

numerical dispersion error than Yee’s scheme. To compare
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Fig. 3. Phase constant of the TEIO mode of a rectangular waveguide loaded

with a ferrite slab. a ‘= 22.86 mm, ajw = 3, e, = 9, 4rT&f, = 2000 G,

Hi = 200 Oe, Ax = a/12 and s = 1/2. Solid line: exact, Triangles: Yee
scheme extended to ferrite treatment. Squares: Rotated Klchtmyer ‘scheme
extend~ to” ferrite treatment.. ,

,.

these two schemes, they have been applied to the analysis

of ferrite-loaded waveguides. From the g+uits obtained, it

seems that ‘the Richtmyer scheme would be better under

high anisotropic c~,nditions and the’ Yee sc~erne adv~tageous.,., ,.. ,

at high frequencies. Further discussion on the relationship

between these two difference schemes can be found in [8].
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